Alignment tests for in-line mathematics

Alignment to context

Juxtaposing normal and math characters.

▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
T\(T\)h\(h\)e\(e\) q\(q\)u\(u\)i\(i\)c\(c\)k\(k\) b\(b\)r\(r\)o\(o\)w\(w\)n\(n\) f\(f\)o\(o\)x\(x\) j\(j\)u\(u\)m\(m\)p\(p\)s\(s\) o\(o\)v\(v\)e\(e\)r\(r\) t\(t\)h\(h\)e\(e\) l\(l\)a\(a\)z\(z\)y\(y\) d\(d\)o\(o\)g\(g\).
████████████████████████████████████████████████████████████████
T\(\mathbf{T}\)h\(\mathbf{h}\)e\(\mathbf{e}\) q\(\mathbf{q}\)u\(\mathbf{u}\)i\(\mathbf{i}\)c\(\mathbf{c}\)k\(\mathbf{k}\) b\(\mathbf{b}\)r\(\mathbf{r}\)o\(\mathbf{o}\)w\(\mathbf{w}\)n\(\mathbf{n}\) f\(\mathbf{f}\)o\(\mathbf{o}\)x\(\mathbf{x}\) j\(\mathbf{j}\)u\(\mathbf{u}\)m\(\mathbf{m}\)p\(\mathbf{p}\)s\(\mathbf{s}\) o\(\mathbf{o}\)v\(\mathbf{v}\)e\(\mathbf{e}\)r\(\mathbf{r}\) t\(\mathbf{t}\)h\(\mathbf{h}\)e\(\mathbf{e}\) l\(\mathbf{l}\)a\(\mathbf{a}\)z\(\mathbf{z}\)y\(\mathbf{y}\) d\(\mathbf{d}\)o\(\mathbf{o}\)g\(\mathbf{g}\).
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

Baseline detachment

Showing characters that rise completely above the baseline, or fall completely below it.

Unified expressions (top) vs. disjoint, separately-delimited characters (bottom).

▄▄▄▄▄▄▄▄▄▄▄
\(x^2 + y^2 = z^2\)
███████████
\(x\)\(^2\) \(+\) \(y\)\(^2\) \(=\) \(z\)\(^2\)
▀▀▀▀▀▀▀▀▀▀▀

▄▄▄▄▄▄▄▄▄▄▄
\(\mathscr{T}_d \to \mathscr{T}_r\)
███████████
\(\mathscr{T}\)\(_d\) \(\to\) \(\mathscr{T}\)\(_r\)
▀▀▀▀▀▀▀▀▀▀▀

▄▄▄▄▄▄▄▄▄▄▄
\(x\prime - y\prime\)
███████████
\(x\)\(\prime\) \(-\) \(y\)\(\prime\)
▀▀▀▀▀▀▀▀▀▀▀

▄▄▄▄▄▄▄▄▄▄▄
\(\underline{}\underline{x}\underline{}x\underline{}\underline{x}\underline{}\)
███████████
\(\underline{}\)\(\underline{x}\)\(\underline{}\)\(x\)\(\underline{}\)\(\underline{x}\)\(\underline{}\)
▀▀▀▀▀▀▀▀▀▀▀

Complex expressions placed in-line

Using in-line delimiters (top) vs. block delimiters (bottom).

▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
Consider \(\sum_{t=0}^\infty p\epsilon^t \prod_{u=0}^{t-1} (1 - p\epsilon^u)\) for instance.
█████████████████████████████████████████
Consider $$\sum_{t=0}^\infty p\epsilon^t \prod_{u=0}^{t-1} (1 - p\epsilon^u)$$ for instance.
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀